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In recent decades, experimental studies of the vortex-induced vibration (VIV) became one of the 
interesting fields of science. However, a variety of assumptions and methods of experiments have led to 
different results in various researches. Several parameters such as mass ratio, aspect ratio, degrees of 
freedom, and boundary conditions affect the VIV response of a simple circular cylinder. The current 
paper reports and discusses the results of in-water VIV experiments on an elastically mounted rigid 
cylinder with various types of end conditions. This paper focusses on the effects of the end condition by 
attaching an endplate to a circular cylinder and the results are compared with those from a cylinder with 
no endplate. The Reynolds number ranges from 5.8×103 to 6.6×104. Experimental setup has also been 
compared  and  verified  with  some  classical  results  of  VIV.  Results  of  current  study  were  favorably  
compatible with previous researchers’ results. The experimental results show that, the end condition 
noticeably changes the VIV amplitude, especially in the lock-in area. Moreover, non-dimensional 
amplitudes shift to the higher reduced velocities when the endplate is removed. In the frequency 
responses, the cylinder with no endplate has lower quantities rather than the cylinder with an attached 
endplate. Evaluation of lift force coefficients also shows a similar pattern of effects on the non-
dimensional amplitude. Consequently, the excitation of the structure in the lock-in region increases 
when the endplate from the cylinder’s end is removed. 
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Fig.1 Experimental  facilities,  (a)  springs  and the  cylinder  cap,  (b)  the  
data logger, (c) the system control server, (d) the towing motor 
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Fig. 2 A schematic view of the experimental set-up 
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Table 1 Physical properties of the hollow circular test cylinders 

 
   

  

mm 65 65   
mm 45 45  
mm 400  400   
N/m 210  210   
% 0.5  0.5   
Hz 1.14 1.24   
- 2.41  2.57  1 
- 0.012  0.013  -2 

1 Mass Ratio 
2 Mass-Damping Parameter 
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Fig. 3 Non-dimensional cross-flow oscillation amplitude vs. reduced 
velocity for the smooth (attached end-plated) cylinder in comparison 
with results from other researchers 
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Fig. 4 Non-dimensional oscillation frequency vs. reduced velocity for 
the smooth (attached end-plated) cylinder in comparison with results 
from other researchers 

4 
 ( )   

0.2   .

 .  
)  (

] 22 [f*=1  .
 ]  1 [

 .7 )
1 1.3 

 ] 22 [ .
  

 

 .
 .  

3-2 -   

 .

 . 
"5" 

 .

 .
 .

 .
2 

5  .
3      

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A
*

U*

Current Study
Ref. [22]
Ref. [1]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

f*

U*

Current Study
Ref. [22]
Ref. [1]

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
75

94
0.

13
95

.1
6.

10
.2

2.
3 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
m

e.
m

od
ar

es
.a

c.
ir

 o
n 

20
24

-0
9-

20
 ]

 

                               4 / 8

https://dorl.net/dor/20.1001.1.10275940.1395.16.10.22.3
https://mme.modares.ac.ir/article-15-4210-fa.html


    

 :     

13951610  425  

  
Fig.  5 Non-dimensional cross-flow oscillation amplitude vs. reduced 
velocity for the test with attached endplate in comparison with the test 
with no endplate  
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Fig. 6 Non-dimensional oscillation frequency vs. reduced velocity for 
the test with attached endplate in comparison with the test with no 
endplate  
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Fig. 7 Time series of the non-dimensional cross-flow displacement for 
the test with attached endplate (left) and the  test with no end plate 
(right) in comparison with the test with no endplate at reduced speeds 
of 5.5, 7, and 9, respectively from top. 
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Fig.  8 Variation  of  the  lift  coefficient  vs.  reduced  velocity  for  the  
cylinder with attached endplate and the cylinder with no endplate 
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Fig. 9 Phase-plane of the lift coefficient and the cylinder displacement 
(right) and the phase shift histograms (left) for the cylinder with 
attached endplate at reduced speeds of 5.5, 7, and 9 
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Fig. 10 Phase-plane of the lift coefficient and the cylinder displacement 
(right) and the phase shift histograms (left) for the cylinder with no 
endplate at reduced speeds of 5.5, 7, and 9 
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